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Abstract

Vibration of orthotropic rectangular plates having viscoelastic point supports at the corners with
symmetrically added four concentrated masses rigidly mounted on the two diagonals of the plate is
analyzed. The Lagrange equations are used to examine the steady state response to a sinusoidally varying
force applied at the centre of a viscoelastically point-supported orthotropic elastic plate of rectangular
shape with the considered locations of the added masses. In the study, for applying the Lagrange equations,
the trial function denoting the deflection of the plate is expressed in polynomial form. By using
the Lagrange equations, the problem is reduced to the solution of a system of algebraic equations. The
influence of the locations of the added masses, mechanical properties characterizing the orthotropy of the
plate material and the damping of the supports to the steady state response of the viscoelastically point-
supported rectangular plates is investigated numerically for the concentrated load at the centre. Because of
the symmetry of the supports and loading condition, only the first three symmetrical modes occur in the
considered frequency range. Therefore, only the results of the first three symmetrical modes are given in the
present study. Convergence studies are made. The validity of the obtained results is demonstrated by
comparing them with other solutions based on the Kirchhoff–Love plate theory.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Free and forced vibration analysis of plates with added concentrated masses and various
boundary conditions is encountered in various engineering applications from printed circuit
boards in electronics to the plates used in naval and ocean engineering systems. Therefore, plate
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problems are of great interest to engineers. Also, the present problem is of considerable interest to
engineers designing plates with added masses at isolated points. The free vibration analysis of
rectangular plates supported at various points with added concentrated masses and based on the
Kirchhoff–Love plate theory is investigated and is well known. However, it appears that there is only
a limited number of studies on the steady state response of viscoelastically point-supported plates.
A considerable number of publications has been concerned with the free vibration analysis of

rectangular isotropic and orthotropic plates supported at various points and based on the
Kirchhoff–Love plate theory (for example Refs. [1–8]. Also, there are a lot of studies on the free
vibration analysis of plates with added masses: Amba-Rao [9] investigated the vibration of a
rectangular plate carrying a concentrated mass. Rossi and Laura [10] investigated the normal
modes of a cantilever rectangular plate with a concentrated mass. Cha [11] investigated the free
vibration of a rectangular plate carrying a concentrated mass. Wu and Luo [12] investigated the
free vibration of a rectangular plate with any number of point masses and translational springs by
using a combined analytical and numerical method.
Although there are lots of studies on the free vibration analysis of rectangular plates supported

at various points, there is only a limited number of studies on the steady state response of point-
supported rectangular plates. The steady state response to a sinusoidally varying force was
determined for a viscoelastically point-supported square or rectangular plate by Yamada et al. [13]
by using the generalized Galerkin method. A generalization of this study to orthotropic rectangular
plates was investigated by Kocat .urk [14]. The steady state response to a sinusoidally varying force
was determined for a viscoelastically point-supported specially orthotropic square or rectangular
plate by Kocat.urk and Alt!ınta-s [15] by using an energy-based finite difference method. In the
present study, the considered problem is an extension of the study of Kocat .urk and Alt!ınta-s [15] to
rectangular plates with added point masses at the considered locations by using the Lagrange
equations with trial function expressed in terms of a double power series instead of the energy-based
finite difference method which was used in Ref. [15]. The effects of the mass ratio and location of the
point masses on the changes of the steady state responses are investigated for some considered
support parameters by the use of the mentioned numerical solution procedure.
The main purpose of the present work is to analyze the steady state response of a

viscoelastically point-supported orthotropic plate with added point masses to a sinusoidally
varying force for various values of the mechanical properties characterizing the orthotropy of the
plate material by using the Lagrange equations. The considered problems are solved within the
framework of the Kirchhoff–Love hypothesis. The convergence study is based on the numerical
values obtained for various numbers of polynomial terms. In the numerical examples, the natural
frequency parameters and the steady state responses to a sinusoidally varying force are
determined for the first three symmetrical mode types. The accuracy of the results is partially
established by comparison with previously published accurate results for the corner point
supported plates based on the thin plate theory.

2. Analysis

Consider a viscoelastically point-supported rectangular orthotropic plate of side lengths a; b

and thickness h with four masses rigidly and symmetrically mounted on the diagonals of the plate
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under a sinusoidally varying concentrated force F ðtÞ at the centre of the plate as shown in Fig. 1,
where kj is the spring constant (stiffness parameter of the jth support), PjðX1j;X2jÞ is the support
force of a point support at the jth support, M1;M2;M3;M4 are the masses rigidly mounted on the
diagonals of the plate at the co-ordinates ðX1M1;X2M1Þ; ðX1M2;X2M2Þ; ðX1M3;X2M3Þ; ðX1M4;X2M4Þ;
respectively. The axes of the elastic symmetry of the plate material coincide with the OX1- and
OX2-axis. Therefore, the plate is specially orthotropic. Also, the coordinate axes OX1 and OX2 are
parallel to the edges of the plate with the origin at O: Although it is possible to take many point
supports and masses at arbitrary points, in the numerical investigations here, because of the
number of the involved parameters, and in the interests of brevity, it will be considered that the
plate is supported symmetrically at the four corner points, where the parameters kj; cj are taken to
have the same values at all the supports denoted by kj ¼ ks; cj ¼ cs and the points masses are
located at the points mentioned above. Also, it is assumed that M ¼ M1 ¼ M2 ¼ M3 ¼ M4: Thus,
in the considered loading, locations of the point masses and support conditions, only symmetrical
vibrations arise in the plate. Under the above-mentioned conditions, the steady state responses of
the viscoelastically corner point-supported plate to a sinusoidally varying force for various
orthotropy ratios, mass ratios, locations of masses and damping values will be determined by
using the Lagrange equations.
For a plate undergoing sinusoidally varying force F ðtÞ ¼ Q:eiot; where o is radian frequency,

the strain energy of bending in Cartesian co-ordinates is given by
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Fig. 1. Viscoelastically point-supported rectangular orthotropic plate with added masses on the two diagonals

subjected to an external force.
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In Eq. (1), D11;D22 and D66 are expressed as follows:

D11 ¼
E1h

3

12ð1� n221=eÞ
; D22 ¼

E2h
3

12ð1� n221=eÞ
; D66 ¼

G12h
3

12
; ð2Þ

where G12 is shear modulus. In deriving the above expressions, the following expressions are used:

n12
E1

¼
n21
E2

; e ¼
E2

E1
: ð3Þ

Here E1; E2 are Young’s moduli in the OX1 and OX2 directions, respectively, and n21 is Poisson’s
ratio for the strain response in the X1 direction due to an applied stress in the X2 direction. The
potential energy of the external force is

Fe ¼ �FðtÞW : ð4Þ

With rotary inertia neglected, the kinetic energy of the vibrating plate with four added point
masses on the two diagonals of the plate is

T ¼
rho2
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where r is the mass density per unit volume, M is one of the four equal concentrated masses on
the diagonal of the plate, and the additive strain energy and dissipation function of viscoelastic
supports are
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1
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Introducing the following non-dimensional parameters:
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where mt is the ratio of the mass of the total concentrated loads to the mass of the plate, the above
energy expressions can be written as

U ¼
D11
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T ¼
a3brho2
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It is known that some expressions satisfying the geometrical boundary conditions are chosen for

%wðx1;x2; tÞ and by using the Lagrange equations, the natural boundary conditions are also
satisfied. By using the Lagrange equations, by assuming the displacement %wðx1;x2; tÞ to be
representable by a linear series of admissible functions and adjusting the coefficients in the series
to satisfy the Lagrange equations, an approximate solution is found for the displacement
function. For applying the Lagrange equations, the trial function %wðx1;x2; tÞ is approximated by
space-dependent polynomial terms x0

1; x
1
1;x

2
1;y;xM

1 and x0
2; x

1
2;x

2
2;y;xN

2 ; and time-dependent
generalized displacement co-ordinates %AmnðtÞ: Thus

%wðx1; x2; tÞ ¼
XN

m¼0

XN

n¼0

%AmnðtÞxm
1 xn

2; ð9Þ

where %wðx1; x2; tÞ is the steady state response (the transverse deflection) of the plate to a
sinusoidally varying force F ðtÞ ¼ Q:eiot: Each term, xm

1 and xn
2 must satisfy the geometrical

boundary conditions. However, in the considered problem, there is no geometrical boundary
condition to be satisfied. As it is known, there is no need for these functions to satisfy the natural
boundary conditions. However, if the natural boundary conditions were also satisfied when
selecting the functions, then the rate of the convergence would be higher.
The function %wðx1; x2; tÞ that is given by Eq. (9) is substituted in Eqs. (8a–e). Then, application

of Lagrange equations yields a set of linear algebraic equations. The Lagrange equations for the
considered problem are given as

d

dt
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where the overdot stands for the partial derivative with respect to time. Introducing the following
non-dimensional parameters:

kj ¼
kja

3
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rhD11
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; q ¼

Qa
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and considering that when the force is expressed as FðtÞ ¼ Q:eiot; then the time-dependent
generalized functions can be expressed as follows:

%AmnðtÞ ¼ Amne
iot: ð12Þ
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In Eq. (12), Am is a complex variable containing a phase angle. Dimensionless complex amplitude
of the displacement of a point of the plate can be expressed as

wðx1; x2Þ ¼
XM
m¼0

XN

n¼0

Amnxm
1 xn

2: ð13Þ

By using Eq. (10), the following set of linear algebraic equations is obtained which can be
expressed in the following matrix form:

½A�fAmng þ ilg½B�fAmng � l2½C�fAmng ¼ fqg; ð14Þ

where ½A�; ½B� and ½C� are coefficient matrices obtained by using Eq. (10).
For free vibration analysis, when the external force and damping of the supports are zero in

Eq. (14), this situation results in a set of linear homogeneous equations that can be expressed in
the following matrix form:

½A�fAmng � l2½C�fAmng ¼ f0g: ð15Þ

By increasing the polynomial terms, the accuracy can be increased. The maximum total
magnitude of the reaction forces of the supports is given by

X4
j¼1

Pj ¼
X4
j¼1

ðkj þ icjoÞa
XN

m¼0

XN

n¼0

Amnxm
1jx

n
2j ð16Þ

and therefore the force transmissibility at the supports is determined by

TR ¼
X4
j¼1

Pj=Q ¼
X4
j¼1

ðkj þ igjlÞ
XM
m¼0

XN

n¼0

Amnxm
1jx

n
2j=ðaqÞ: ð17Þ

The number of unknown coefficients is ðN þ 1ÞðN þ 1Þ: Again, the number of equations that can
be written for each Amn coefficient by using Eq. (10) is ðN þ 1ÞðN þ 1Þ; which is given in matrix
form by Eq. (14). Therefore, the total number of these equations is equivalent to the total number
of unknown displacements and these unknowns can be determined by using the above mentioned
equations.
The eigenvalues (characteristic values) l are found from the condition that the determinant of

the system of equations given by Eq. (15) must vanish.

3. Numerical results

The steady state response to a point force F ðtÞ acting at the centre of an orthotropic square
plate with four added concentrated masses attached on the two diagonals of the plate,
viscoelastically supported at four points which are symmetrically located at the corners, is
calculated numerically. The parameters ki and gi are taken as having the same respective values at
all the supports denoted by ki ¼ ks and gi ¼ gs: Because of the structural symmetry and symmetry
of the external force, only symmetrical vibrations arise in the plate. The symbol SS represents
symmetrical vibration with respect to centre-lines.
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Although there are no existing results on the forced vibration analysis of the considered
problem, there are many existing results on the free vibration analysis of corner point-supported
isotropic plates. Therefore, to show the accuracy of the solution procedure, a short investigation
of the free vibration of an elastically point-supported plate is made only to compare the obtained
results with the existing results of free vibration analysis of elastically point-supported plates: The
natural frequencies of the elastically point-supported plate are determined by calculating the
eigenvalues l of the frequency Eq. (15). The force transmissibilities are determined for various
damping parameters gs for various values of mass ratios mt and stiffness parameters ks by using
Eqs. (14, 17). In all of the numerical calculations, n21 is taken as 0:3 and the locations of the point
supports are chosen at the corners of the plate.
In the frequency and steady state response equations, m and n are odd or even integers

depending on the vibration mode. For example, the SA mode is symmetric about the x2-axis and
antisymmetric about the x1-axis. Therefore, for the SA mode, m ¼ 0; 2; 4;y and n ¼ 1; 3; 5;y :
However, in the present study, because of the symmetry of the problem, only the SS modes are
dealt with. Therefore, for the SS modes, m ¼ 0; 2; 4;y and n ¼ 0; 2; 4;y : In the numerical
calculations, G12 is taken as given by Szilard [16] as follows:

G12E
E1

ffiffiffi
e

p
2ð1þ n21

ffiffiffiffiffiffiffi
1=e

p
Þ
: ð18Þ
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Table 1

Comparison of the obtained results with the existing results and convergence study of frequency parameters l for corner
point supported square plates

Determinant size SS-1 SS-2 SS-3

(a) n21 ¼ 0:3; a ¼ 1; e ¼ 1

Present study k ¼ 1
 108 9
 9 7.11180 19.72570 45.55991

16
 16 7.11093 19.59627 44.37619

25
 25 7.11089 19.59614 44.36968

36
 36 7.11088 19.59614 44.36961

Narita [4] 37
 37 7.11089 19.5961 44.3696

Kocat .urk and ’Ilhan [8] 36
 36 7.11088 19.5961 44.3696

Venkateswara Rao et al. [5] 180
 180 7.11088 19.5961 —

Kerstens [1] 36
 36 7.15 19.49 43.89

(b) n21 ¼ 0:333; a ¼ 1; e ¼ 1

Present study k ¼ 1
 108 9
 9 7.10274 19.34726 45.19786

16
 16 7.10196 19.22399 44.04902

25
 25 7.10192 19.22386 44.04289

36
 36 7.10192 19.22386 44.04282

Narita [4] 37
 37 7.10192 19.2239 44.0428

Kocat .urk and ’Ilhan [8] 36
 36 7.10192 19.22386 44.04282

Gorman [3] 7.18 19.22 44.28
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It is possible to simulate infinite lateral support stiffness by setting the translational stiffness
coefficient equal to 1
 108 at all the supports to compare the obtained results with the existing
results of the point supported plates. Also, by setting the translational stiffness coefficient equal to
zero at all the supports, a completely free plate situation can be obtained. In the case when the
mass ratio is zero, then the considered problem is reduced to the problem investigated by
Kocat .urk and Alt!ınta-s [15] by using the energy-based finite difference method. The results
obtained are compared in Table 1 with those of Kerstens [1], Gorman [3], Narita [4],
Venkateswara Rao et al. [5] and Kocat .urk and ’Ilhan [8] for the SS-1, SS-2, SS-3 natural
frequencies of an isotropic square plate supported at the corners for n21 ¼ 0:3: Also, the
convergence is tested in Table 1 by taking the number of terms ðN þ 1ÞðN þ 1Þ ¼ 3
 3; 4

4; 5
 5; 6
 6: The corresponding determinant size becomes 9
 9; 16
 16; 25
 25; 36
 36;
respectively. The exactness of the present results with the results of Narita [4], Kocat .urk and ’Ilhan
[8] is because all of the studies use the polynomial terms for the trial function and in the case of
zero damping, the present problem is reduced to those of Narita [4] and Kocat .urk and ’Ilhan [8]:
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Fig. 2. The force transmissibilities for various values of mt for E2=E1 ¼ 1 for (a) xM ¼ 0; (b) xM ¼ 0:25; (c) xM ¼ 0:375;
(d) xM ¼ 0:5: ks ¼ 100; gs ¼ 10: mt ¼ 0 –, mt ¼ 0:5 -�-, mt ¼ 1:0 ?; mt ¼ 1:5 - -.
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Namely, in the case of zero damping, the present method is reduced to the classical Ritz method.
For determining the mode shapes of the vibration, for the considered eigenvalue, a coefficient is
taken as known in Eq. (15), then the other coefficients are determined according to this known
coefficient. After that, by using Eq. (13), the mode shape of the considered vibration can be
determined. It is seen from Table 1 that the present converged values for plates without added
masses show very good agreement with the existing results [1,3–5,8]. As it is observed from
Table 1, the frequency parameter decreases as the number of the polynomial terms increases. It
means that the convergence is from above. By increasing the number of the polynomial terms, the
exact value can be approached from above. It should be remembered that energy methods always
overestimate the fundamental frequency, so with more refined analyses, the exact value can be
approached from above. The convergence study indicates that the calculated values are converged
to within five significant figures.
From here on, in the calculation of the results of the present study, 4
 4 terms of the

polynomial series are used, namely the size of the determinant is 16
 16: It was determined by
previous studies [13–15] that, when increasing the stiffness parameter ks; the frequency parameters
increase monotonically and ultimately become the values of a simply point-supported plate.
Figs. 2–4 show the force transmissibilities for various values of mt for E2=E1 ¼ 1; E2=E1 ¼ 0:8;
E2=E1 ¼ 0:6 for xM ¼ 0; 0:25; 0:375; 0:5; respectively. In Tables 2–4 the frequencies at which the
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Fig. 3. The force transmissibilities for various values of mt for E2=E1 ¼ 0:8 for (a) xM ¼ 0; (b) xM ¼ 0:25; (c) xM ¼
0:375; (d) xM ¼ 0:5: ks ¼ 100; gs ¼ 10: mt ¼ 0 –, mt ¼ 0:5 -�-, mt ¼ 1:0 ?; mt ¼ 1:5 - -.
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peak values of the force transmissibilities occur are determined for various damping parameters gs

for mt¼0:0; 0:5; 1:0; 1:5; xM ¼ 0:0; 0:25; 0:375; 0:5 by using Eqs. (13, 14, 16, 17) for E2=E1 ¼ 1;
E2=E1 ¼ 0:8; E2=E1 ¼ 0:6; respectively. In the isotropic case, in the SS-2 vibration mode, for
E2=E1 ¼ 1; the frequency parameter remains constant without being affected by the variation of
ks [13–15] and by the variation of the mass ratio mt when the masses are on the two diagonals.
Also, the SS-2 mode does not occur for the related forced vibration of the viscoelastically point-
supported plate with added concentrated masses on the two diagonals in the isotropic case for the
considered parameters as seen from Fig. 2. This is because the two diagonals of the plate coincide
with the nodal lines for the SS-2 mode. When the value of E2=E1 is unity, the SS-2 vibration with
nodal lines coinciding with the two diagonals does not arise in the plate. Therefore, in the case of
SS-2 mode, for the isotropic case, the line for this related mode in Table 3 is not shown. However,
in the orthotropic case, in the SS-2 vibration mode, frequency parameters change with the
variation of mt and ks which can be seen from Figs. 3 and 4. It means that the nodal lines do not
coincide with the two diagonals of the plate when the plate is orthotropic. It is deduced from
Tables 2–4 and Figs. 5–7 that, for SS-1 mode, for constant mt value, for increasing values of xM ;
the frequency parameters increase. However, for SS-3 mode, for constant mt value, for increasing
values of xM ; the frequency parameters increase until a certain value of xM : After that certain
value, the frequency values decrease. However, the frequencies cannot be greater than the
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Fig. 4. The force transmissibilities for various values of mt for E2=E1 ¼ 0:6 for (a) xM ¼ 0; (b) xM ¼ 0:25; (c) xM ¼
0:375; (d) xM ¼ 0:5: ks ¼ 100; gs ¼ 10: mt ¼ 0 –, mt ¼ 0:5 -�-, mt ¼ 1:0 ?; mt ¼ 1:5 - -.
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frequencies of the plate without added point masses. When the gs values or ks values are big
enough, then, for xM ¼ 0:5; there is no effect of mt on the frequency parameters and on the force
transmissibilities. When xM ¼ 0:0; then the mass ratio is the most effective on SS-1 mode
frequencies. Also, when xM ¼ 0:5; then the mass ratio is the most effective on SS-3 mode
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Table 2

The frequencies and dimensionless damping coefficients at which the peak values of the force transmissibilities occur:

n21 ¼ 0:3; ks ¼ 100; e ¼ 1

Modes mt gs ¼ 0 gs ¼ 1 gs ¼ 3 gs ¼ 5 gs ¼ 10 gs ¼ 20 gs ¼ 2000

x1M ¼ x2M ¼ 0; e ¼ 1

SS-1 0 6.72 6.72 6.74 6.76 6.83 6.97 7.11

0.5 4.88 4.89 4.89 4.90 4.92 4.99 5.10

1 4.01 4.01 4.01 4.01 4.03 4.07 4.17

1.5 3.48 3.48 3.48 3.48 3.49 3.52 3.61

SS-3 0 40.62 41.03 42.77 43.64 44.17 44.32 44.38

0.5 27.42 27.51 28.09 28.62 29.14 29.33 29.40

1 25.07 25.15 25.62 26.10 26.63 26.83 26.91

1.5 24.11 24.17 24.60 25.06 25.60 25.81 25.89

x1M ¼ x2M ¼ 0:25; e ¼ 1

SS-1 0 6.72 6.72 6.74 6.76 6.83 6.97 7.11

0.5 5.41 5.42 5.42 5.43 5.48 5.57 5.72

1 4.66 4.66 4.66 4.67 4.70 4.77 4.92

1.5 4.15 4.15 4.15 4.15 4.18 4.24 4.38

SS-3 0 40.62 41.03 42.77 43.64 44.17 44.32 44.38

0.5 40.62 41.02 42.76 43.62 44.15 44.29 44.35

1 40.61 41.02 42.75 43.61 44.13 44.28 44.33

1.5 40.61 41.02 42.75 43.60 44.12 44.27 44.32

x1M ¼ x2M ¼ 0:375; e ¼ 1

SS-1 0 6.72 6.72 6.74 6.76 6.83 6.97 7.11

0.5 6.06 6.06 6.07 6.09 6.16 6.31 6.49

1 5.55 5.55 5.56 5.58 5.64 5.78 6.00

1.5 5.14 5.14 5.15 5.16 5.22 5.36 5.60

SS-3 0 40.62 41.03 42.77 43.64 44.17 44.32 44.38

0.5 32.21 32.44 33.97 35.37 36.53 36.88 37.01

1 28.34 28.49 29.54 30.79 32.12 32.58 32.75

1.5 26.25 26.36 27.16 28.23 29.57 30.08 30.27

x1M ¼ x2M ¼ 0:5; e ¼ 1

SS-1 0 6.72 6.72 6.74 6.76 6.83 6.97 7.11

0.5 6.70 6.70 6.72 6.74 6.83 6.97 7.11

1 6.68 6.68 6.70 6.72 6.82 6.97 7.11

1.5 6.65 6.66 6.67 6.70 6.81 6.98 7.11

SS-3 0 40.62 41.03 42.77 43.64 44.17 44.32 44.38

0.5 27.51 27.52 — — — — 44.38

1 20.48 20.29 18.49 — — — 44.38

1.5 17.02 16.86 15.17 — — — 44.38
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Table 3

The frequencies and dimensionless damping coefficients at which the peak values of the force transmissibilities occur:

n21 ¼ 0:3; ks ¼ 100; e ¼ 0:8

Modes mt gs ¼ 0 gs ¼ 1 gs ¼ 3 gs ¼ 5 gs ¼ 10 gs ¼ 20 gs ¼ 2000

x1M ¼ x2M ¼ 0; e ¼ 0:8
SS-1 0 6.36 6.36 6.37 6.39 6.45 6.56 6.69

0.5 4.63 4.63 4.63 4.64 4.66 4.71 4.81

1 3.80 3.80 3.80 3.80 3.81 3.85 3.94

1.5 3.30 3.30 3.30 3.30 3.31 3.33 3.41

SS-2 0 18.20 18.20 18.20 18.19 18.33 18.22 18.22

0.5 18.19 18.19 18.20 18.20 18.20 18.21 18.21

1 18.19 18.19 18.19 18.20 18.20 18.20 18.21

1.5 18.19 18.19 18.19 18.20 18.20 18.22 18.22

SS-3 0 38.66 38.97 40.32 41.04 41.50 41.63 41.68

0.5 25.98 26.06 26.50 26.92 27.36 27.52 27.58

1 23.75 23.80 24.16 24.54 24.98 25.16 25.23

1.5 22.82 22.88 23.20 23.57 24.01 24.20 24.27

x1M ¼ x2M ¼ 0:25; e ¼ 0:8
SS-1 0 6.36 6.36 6.37 6.39 6.45 6.56 6.69

0.5 5.13 5.13 5.13 5.14 5.18 5.26 5.39

1 4.41 4.41 4.41 4.42 4.44 4.50 4.63

1.5 3.93 3.93 3.93 3.93 3.95 4.00 4.13

SS-2 0 18.20 18.20 18.20 18.19 18.33 18.22 18.22

0.5 18.20 18.20 18.20 18.20 18.19 18.15 18.22

1 18.20 18.20 18.20 18.20 18.20 18.21 18.21

1.5 18.20 18.20 18.20 18.20 18.20 18.21 18.21

SS-3 0 38.66 38.97 40.32 41.04 41.50 41.63 41.68

0.5 38.65 38.96 40.32 41.03 41.48 41.61 41.66

1 38.65 38.96 40.31 41.02 41.47 41.60 41.65

1.5 38.65 38.96 40.31 41.01 41.46 41.59 41.64

x1M ¼ x2M ¼ 0:375; e ¼ 0:8
SS-1 0 6.36 6.36 6.37 6.39 6.45 6.56 6.69

0.5 5.74 5.74 5.75 5.77 5.82 5.94 6.10

1 5.26 5.26 5.27 5.28 5.33 5.45 5.64

1.5 4.88 4.88 4.89 4.90 4.94 5.05 5.26

SS-2 0 18.20 18.20 18.20 18.19 18.33 18.22 18.22

0.5 18.18 18.18 18.18 18.19 18.19 18.20 18.20

1 18.16 18.16 18.17 18.17 18.18 18.19 18.19

1.5 18.14 18.14 18.15 18.16 18.17 18.18 18.18

SS-3 0 38.66 38.97 40.32 41.04 41.50 41.63 41.68

0.5 30.84 31.04 32.28 33.42 34.41 34.73 34.84

1 27.18 27.30 28.17 29.19 30.31 30.72 30.87

1.5 25.19 25.28 25.95 26.83 27.95 28.40 28.57

x1M ¼ x2M ¼ 0:5; e ¼ 0:8
SS-1 0 6.36 6.36 6.37 6.39 6.45 6.56 6.69

0.5 6.35 6.35 6.36 6.38 6.44 6.56 6.69

1 6.33 6.33 6.34 6.36 6.44 6.56 6.69
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frequencies. In the case of over-large values of ks or gs; the plate behaves like a simply point-
supported plate. The resonant peaks occur at different values of l while changing the damping
parameter gs between 0 and N: However, the frequency parameter l remains between the
frequency parameters l obtained for gs ¼ 0 and N which was mentioned in Ref. [15].
It is seen from Figs. 3, 4, 6 and 7 that the effect of the values and locations of the masses is

insignificant on the value of frequency parameter l of the SS-2 mode in the case of orthotropic
plates for the considered orthotrophy ratios. Also, it can be deduced from Table 2 and Figs. 5–7
that, within some values of damping parameters, the peak values of the force transmissibilities
become minimal. In some mass ratios and damping parameters, for xM ¼ 0:5; e ¼ 0:8; the peak
values of the force transmissibilities does not occur for SS-3 mode range. A similar situation is
valid for xM ¼ 0:5; e ¼ 0:6; for the force transmissibilities of SS-3 mode range. When xM ¼ 0:25;
for all orthotropy values and damping parameters, it can be said that there is almost no effect of
the mass ratios on the frequency values of the SS-2 and SS-3 modes. It can be seen from these
figures that with the variation of damping parameter gs; an optimum damping parameter can be
obtained for which the values of the resonant peaks are minimal. This situation was investigated
before by Kocat .urk and Alt!ınta-s [15] for viscoelastically point-supported plates without masses.
The same situation is valid in the present study. However, for the conciseness of the study, the
optimum values of the damping parameters are not investigated here.
As far as the authors know, there are no published results to compare the present obtained

results of viscoelastically point-supported orthotropic plates with added concentrated masses on
the diagonals of the plate.

4. Conclusions

By using the Lagrange equations, the natural frequencies for the SS mode of elastically point-
supported orthotropic rectangular plates with added concentrated masses and the steady state
response of a viscoelastically point-supported orthotropic square plates again with added
concentrated masses to a sinusoidally varying force has been studied and compared with the
existing results. To use the Lagrange equations with the trial function in the polynomial form is a
very good way for studying the structural behaviour of plates elastically or viscoelastically
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Table 3 (continued)

Modes mt gs ¼ 0 gs ¼ 1 gs ¼ 3 gs ¼ 5 gs ¼ 10 gs ¼ 20 gs ¼ 2000

1.5 6.31 6.31 6.32 6.35 6.43 6.57 6.69

SS-2 0 18.20 18.20 18.20 18.19 18.33 18.22 18.22

0.5 18.19 18.19 18.18 18.17 18.26 18.22 18.22

1 18.14 18.14 18.10 18.46 18.24 18.22 18.22

1.5 16.81 16.67 15.23 18.26 18.23 18.22 18.22

SS-3 0 38.66 38.97 40.32 41.04 41.50 41.63 41.68

0.5 27.31 27.45 — — — — 41.66

1 20.41 20.26 19.15 — — — 41.65

1.5 18.30 18.30 18.28 — — — 41.64
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Table 4

The frequencies and dimensionless damping coefficients at which the peak values of the force transmissibilities occur:

n21 ¼ 0:3; ks ¼ 100; e ¼ 0:6

Modes mt gs ¼ 0 gs ¼ 1 gs ¼ 3 gs ¼ 5 gs ¼ 10 gs ¼ 20 gs ¼ 2000

x1M ¼ x2M ¼ 0; e ¼ 0:6
SS-1 0 5.84 5.84 5.85 5.86 5.90 5.98 6.09

0.5 4.25 4.25 4.26 4.26 4.27 4.31 4.40

1 3.50 3.50 3.50 3.50 3.51 3.53 3.60

1.5 3.03 3.03 3.03 3.04 3.04 3.06 3.12

SS-2 0 16.58 16.58 16.57 16.56 16.95 16.67 16.65

0.5 16.58 16.58 16.57 16.55 16.31 16.67 16.65

1 16.58 16.57 16.57 16.55 16.37 16.67 16.65

1.5 16.57 16.57 16.57 16.55 16.39 16.67 16.65

SS-3 0 36.28 36.49 37.44 37.98 38.35 38.46 38.50

0.5 24.25 24.30 24.59 24.89 25.23 25.36 25.41

1 22.14 22.17 22.41 22.68 23.01 23.16 23.22

1.5 21.26 21.30 21.52 21.77 22.10 22.25 22.32

x1M ¼ x2M ¼ 0; e ¼ 0:6
SS-1 0 5.84 5.84 5.85 5.86 5.90 5.98 6.09

0.5 4.71 4.71 4.72 4.72 4.74 4.80 4.91

1 4.06 4.06 4.06 4.06 4.08 4.12 4.23

1.5 3.61 3.61 3.62 3.62 3.63 3.66 3.77

SS-2 0 16.58 16.58 16.57 16.56 16.95 16.67 16.65

0.5 16.56 16.56 16.56 16.57 16.59 16.61 16.62

1 16.55 16.55 16.56 16.57 16.58 16.60 16.61

1.5 16.54 16.54 16.55 16.56 16.58 16.59 16.60

SS-3 0 36.28 36.49 37.44 37.98 38.35 38.46 38.50

0.5 36.27 36.49 37.44 37.97 38.34 38.45 38.49

1 36.27 36.49 37.43 37.97 38.33 38.44 38.48

1.5 36.27 36.49 37.43 37.96 38.33 38.44 38.48

x1M ¼ x2M ¼ 0; e ¼ 0:6
SS-1 0 5.84 5.84 5.85 5.86 5.90 5.98 6.09

0.5 5.28 5.28 5.29 5.30 5.33 5.42 5.55

1 4.85 4.85 4.85 4.86 4.89 4.98 5.13

1.5 4.50 4.50 4.50 4.51 4.54 4.62 4.79

SS-2 0 16.58 16.58 16.57 16.56 16.95 16.67 16.65

0.5 16.50 16.50 16.51 16.52 16.55 16.57 16.59

1 16.42 16.42 16.43 16.49 16.49 16.52 16.54

1.5 16.35 16.35 16.37 16.39 16.44 16.48 16.50

SS-3 0 36.28 36.49 37.44 37.98 38.35 38.46 38.50

0.5 29.17 29.32 30.23 31.09 31.87 32.13 32.23

1 25.78 25.87 26.52 27.28 28.15 28.48 28.60

1.5 23.95 24.02 24.52 25.16 26.02 26.38 26.51

x1M ¼ x2M ¼ 0; e ¼ 0:6
SS-1 0 5.84 5.84 5.85 5.86 5.90 5.98 6.09

0.5 5.83 5.83 5.84 5.85 5.89 5.98 6.09

1 5.82 5.82 5.83 5.84 5.89 5.98 6.09
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point-supported. For the same accuracy level, it needs considerably fewer degrees of freedom than
the finite element method and energy-based finite difference method.
By the application of the above-mentioned solution technique, for the SS vibration mode

family, the first three values of the natural frequencies are determined, the convergence
characteristics of the frequency parameters are investigated numerically for orthotropic square
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Table 4 (continued)

Modes mt gs ¼ 0 gs ¼ 1 gs ¼ 3 gs ¼ 5 gs ¼ 10 gs ¼ 20 gs ¼ 2000

1.5 5.81 5.81 5.81 5.83 5.88 5.98 6.09

SS-2 0 16.58 16.58 16.57 16.56 16.95 16.67 16.65

0.5 16.55 16.55 16.53 16.49 16.86 16.67 16.65

1 16.46 16.46 16.41 — 16.78 16.67 16.65

1.5 15.97 15.92 15.18 — 16.74 16.67 16.65

SS-3 0 36.28 36.49 37.44 37.98 38.35 38.46 38.50

0.5 27.12 27.47 — — — — 38.50

1 20.37 20.26 19.45 17.83 — — 38.50

1.5 17.42 17.38 17.14 16.94 — — 38.50

Fig. 5. The force transmissibilities for various values of xM for E2=E1 ¼ 1 for (a) gs ¼ 0; (b) gs ¼ 1; (c) gs ¼ 5;
(d) gs ¼ 20: ks ¼ 100; mt ¼ 1: xm ¼ 0 –, xm ¼ 0:25 -�-, xm ¼ 0:375 ?; xm ¼ 0:5 - -.
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plates with added concentrated masses on the two diagonals of the plate elastically supported at
four points at the corners and compared with the existing results. It is seen that the rate of
convergence is very high. The effect of the mass ratios, the locations of point masses and
orthotropy on the frequency parameters is investigated and shown in Tables 2–4.
The response curves to a sinusoidally varying point force acting at the centre are determined

numerically for orthotropic square plates with point masses, viscoelastically supported at four
points at the corners. The effect of the mass ratio, locations of the supports, orthotropy and
damping of the supports on the response curves is investigated and shown in Figs. 2–7 and Tables
2–4. It is seen that, because of the orthotropy, the SS-2 mode occurs in the plate.
All of the obtained results are very accurate and may be useful for designing mechanical

systems under external dynamic loads.

ARTICLE IN PRESS

Fig. 6. The force transmissibilities for various values of xM for E2=E1 ¼ 0:8 for (a) gs ¼ 0; (b) gs ¼ 1; (c) gs ¼ 5;
(d) gs ¼ 20: ks ¼ 100; mt ¼ 1: xm ¼ 0 –, xm ¼ 0:25 -�-, xm ¼ 0:375 ?; xm ¼ 0:5 - -.
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